翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Euler's function : ウィキペディア英語版
Euler function

:''For other meanings, see List of topics named after Leonhard Euler''.
In mathematics, the Euler function is given by
:\phi(q)=\prod_^\infty (1-q^k).
Named after Leonhard Euler, it is a prototypical example of a q-series, a modular form, and provides the prototypical example of a relation between combinatorics and complex analysis.
==Properties==
The coefficient p(k) in the formal power series expansion for 1/\phi(q) gives the number of all partitions of k. That is,
:\frac=\sum_^\infty p(k) q^k
where p(k) is the partition function of k.
The Euler identity, also known as the Pentagonal number theorem is
:\phi(q)=\sum_^\infty (-1)^n q^.
Note that (3n^2-n)/2 is a pentagonal number.
The Euler function is related to the Dedekind eta function through a Ramanujan identity as
:\phi(q)= q^} \eta(\tau)
where q=e^ is the square of the nome.
Note that both functions have the symmetry of the modular group.
The Euler function may be expressed as a Q-Pochhammer symbol:
:\phi(q)=(q;q)_\infty
The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q=0, yielding:
:\ln(\phi(q))=-\sum_^\infty\frac\,\frac
which is a Lambert series with coefficients ''-1/n''. The logarithm of the Euler function may therefore be expressed as:
:\ln(\phi(q))=\sum_^\infty b_n q^n
where
:b_n=-\sum_\frac= -(3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ... ) (see OEIS (A000203 ))
On account of the following identity,
:\sum_ d = \sum_ \frac n d
this may also be written as
:\ln(\phi(q))=-\sum_^\infty \frac \sum_ d

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Euler function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.